Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.402
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2322550121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657053

RESUMO

Pronounced differences in neurotransmitter release from a given presynaptic neuron, depending on the synaptic target, are among the most intriguing features of cortical networks. Hippocampal pyramidal cells (PCs) release glutamate with low probability to somatostatin expressing oriens-lacunosum-moleculare (O-LM) interneurons (INs), and the postsynaptic responses show robust short-term facilitation, whereas the release from the same presynaptic axons onto fast-spiking INs (FSINs) is ~10-fold higher and the excitatory postsynaptic currents (EPSCs) display depression. The mechanisms underlying these vastly different synaptic behaviors have not been conclusively identified. Here, we applied a combined functional, pharmacological, and modeling approach to address whether the main difference lies in the action potential-evoked fusion or else in upstream priming processes of synaptic vesicles (SVs). A sequential two-step SV priming model was fitted to the peak amplitudes of unitary EPSCs recorded in response to complex trains of presynaptic stimuli in acute hippocampal slices of adult mice. At PC-FSIN connections, the fusion probability (Pfusion) of well-primed SVs is 0.6, and 44% of docked SVs are in a fusion-competent state. At PC-O-LM synapses, Pfusion is only 40% lower (0.36), whereas the fraction of well-primed SVs is 6.5-fold smaller. Pharmacological enhancement of fusion by 4-AP and priming by PDBU was recaptured by the model with a selective increase of Pfusion and the fraction of well-primed SVs, respectively. Our results demonstrate that the low fidelity of transmission at PC-O-LM synapses can be explained by a low occupancy of the release sites by well-primed SVs.


Assuntos
Neurotransmissores , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Camundongos , Neurotransmissores/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transmissão Sináptica/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Modelos Neurológicos
2.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326038

RESUMO

There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.


Assuntos
Giro Denteado , Potenciação de Longa Duração , Masculino , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Estimulação Elétrica/métodos
3.
Neuropsychopharmacology ; 49(6): 1014-1023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368493

RESUMO

In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-AR). Despite the critical influence of noradrenaline on the activity of dorsal raphe serotonin neurons, the source of noradrenergic afferents has not been resolved and the presynaptic mechanisms that regulate noradrenaline-dependent synaptic transmission have not been described. Using an acute brain slice preparation from male and female mice and electrophysiological recordings from dorsal raphe serotonin neurons, we found that selective optogenetic activation of locus coeruleus terminals in the dorsal raphe was sufficient to produce an α1-AR-mediated excitatory postsynaptic current (α1-AR-EPSC). Activation of inhibitory α2-adrenergic receptors (α2-AR) with UK-14,304 eliminated the α1-AR-EPSC via presynaptic inhibition of noradrenaline release, likely via inhibition of voltage-gated calcium channels. In a subset of serotonin neurons, activation of postsynaptic α2-AR produced an outward current through activation of GIRK potassium conductance. Further, in vivo activation of α2-AR by systemic administration of clonidine reduced the expression of c-fos in the dorsal raphe serotonin neurons, indicating reduced neural activity. Thus, α2-AR are critical regulators of serotonin neuron excitability.


Assuntos
Núcleo Dorsal da Rafe , Locus Cerúleo , Receptores Adrenérgicos alfa 2 , Neurônios Serotoninérgicos , Transmissão Sináptica , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Masculino , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/fisiologia , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Feminino , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Camundongos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Optogenética , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Camundongos Transgênicos
4.
Brain Res ; 1806: 148313, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878342

RESUMO

The fate of proteins is determined by the addition of various forms of polyubiquitin during ubiquitin-mediated proteasomal degradation. Cylindromatosis (CYLD), a K63-specific deubiquitinase, is enriched in postsynaptic density fractions of the rodent central nervous system (CNS), but the synaptic role of CYLD in the CNS is poorly understand. Here we show that CYLD deficiency (Cyld-/-) results in reduced intrinsic hippocampal neuronal firing, a decrease in the frequency of spontaneous excitatory postsynaptic currents and a decrease in the amplitude of field excitatory postsynaptic potentials. Moreover, Cyld-/- hippocampus shows downregulated levels of presynaptic vesicular glutamate transporter 1 (vGlut1) and upregulated levels of postsynaptic GluA1, a subunit of the AMPA receptor, together with an altered paired-pulse ratio (PPR). We also found increased activation of astrocytes and microglia in the hippocampus of Cyld-/- mice. The present study suggests a critical role for CYLD in mediating hippocampal neuronal and synaptic activity.


Assuntos
Hipocampo , Transmissão Sináptica , Camundongos , Animais , Hipocampo/fisiologia , Transmissão Sináptica/fisiologia , Neurônios , Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal , Enzima Desubiquitinante CYLD
5.
Cell Rep ; 41(11): 111820, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516768

RESUMO

Synaptic facilitation is a major form of short-term plasticity typically driven by an increase in residual presynaptic calcium. Using near-total internal reflection fluorescence (near-TIRF) imaging of single vesicle release in cultured hippocampal synapses, we demonstrate a distinctive, release-dependent form of facilitation in which probability of vesicle release is higher following a successful glutamate release event than following a failure. This phenomenon has an onset of ≤500 ms and lasts several seconds, resulting in clusters of successful release events. The release-dependent facilitation requires neuronal contact with astrocytes and astrocytic glutamate uptake by EAAT1. It is not observed in neurons grown alone or in the presence of astrocyte-conditioned media. This form of facilitation dynamically amplifies multi-vesicular release. Facilitation-evoked release events exhibit spatial clustering and have a preferential localization toward the active zone center. These results uncover a rapid astrocyte-dependent form of facilitation acting via modulation of multi-vesicular release and displaying distinctive spatiotemporal properties.


Assuntos
Astrócitos , Plasticidade Neuronal , Astrócitos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Hipocampo/fisiologia , Cálcio , Ácido Glutâmico , Transmissão Sináptica/fisiologia
6.
PLoS One ; 17(9): e0273501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36121856

RESUMO

Spontaneous synaptic activity is a hallmark of biological neural networks. A thorough description of these synaptic signals is essential for understanding neurotransmitter release and the generation of a postsynaptic response. However, the complexity of synaptic current trajectories has either precluded an in-depth analysis or it has forced human observers to resort to manual or semi-automated approaches based on subjective amplitude and area threshold settings. Both procedures are time-consuming, error-prone and likely affected by human bias. Here, we present three complimentary methods for a fully automated analysis of spontaneous excitatory postsynaptic currents measured in major cell types of the mouse retina and in a primary culture of mouse auditory cortex. Two approaches rely on classical threshold methods, while the third represents a novel machine learning-based algorithm. Comparison with frequently used existing methods demonstrates the suitability of our algorithms for an unbiased and efficient analysis of synaptic signals in the central nervous system.


Assuntos
Aprendizado de Máquina , Transmissão Sináptica , Algoritmos , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Camundongos , Neurotransmissores , Transmissão Sináptica/fisiologia
7.
J Neurophysiol ; 128(4): 892-909, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069457

RESUMO

Spinal cord injury (SCI) has substantial impacts on autonomic function. In part, SCI results in loss of normal autonomic activity that contributes to injury-associated pathology such as neurogenic bladder, bowel, and sexual dysfunction. Yet little is known of the impacts of SCI on peripheral autonomic neurons that directly innervate these target organs. In this study, we measured changes in synaptic properties of neurons of the mouse major pelvic ganglion (MPG) associated with acute and chronic SCI. Our data show that functional and physiological properties of synapses onto MPG neurons are altered after SCI and differ between acute and chronic injury. After acute injury excitatory postsynaptic potentials (EPSPs) show increased rise and decay time constants leading to overall broader and longer EPSPs, whereas in chronic-injured animals EPSPs are reduced in amplitude and show faster rise and decay leading to shorter EPSPs. Synaptic depression and low-pass filtering are also altered in injured animals. Finally, cholinergic currents are smaller in acute-injured animals but larger in chronic-injured animals relative to control animals. These changes in synaptic properties are associated with differences in nicotinic receptor subunit expression as well. MPG CHRNA3 mRNA levels decreased after injury, whereas CHRNA4 mRNAs increased. Furthermore, changes in the correlations of α- and ß-subunit mRNAs suggest that nicotinic receptor subtype composition is altered after injury. Taken together, our data demonstrate that peripheral autonomic neurons are fundamentally altered after SCI, suggesting that longer-term therapeutic approaches could target these neurons directly to potentially help ameliorate neurogenic target organ dysfunction.NEW & NOTEWORTHY Spinal cord injury (SCI) has substantial impacts on autonomic function, yet little is known of the impacts of SCI on autonomic neurons that directly innervate effectors impacted by injury. Here we investigated changes at the cellular level associated with SCI in neurons that are "downstream" of the central injury. An understanding of these off-target impacts of SCI ultimately will be critical in the context of effective restoration of function through neuromodulation of pharmacological therapeutic approaches.


Assuntos
Receptores Nicotínicos , Traumatismos da Medula Espinal , Animais , Colinérgicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , RNA Mensageiro , Medula Espinal
8.
EMBO Rep ; 23(11): e54507, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36148511

RESUMO

A central principle of synaptic transmission is that action potential-induced presynaptic neurotransmitter release occurs exclusively via Ca2+ -dependent secretion (CDS). The discovery and mechanistic investigations of Ca2+ -independent but voltage-dependent secretion (CiVDS) have demonstrated that the action potential per se is sufficient to trigger neurotransmission in the somata of primary sensory and sympathetic neurons in mammals. One key question remains, however, whether CiVDS contributes to central synaptic transmission. Here, we report, in the central transmission from presynaptic (dorsal root ganglion) to postsynaptic (spinal dorsal horn) neurons in vitro, (i) excitatory postsynaptic currents (EPSCs) are mediated by glutamate transmission through both CiVDS (up to 87%) and CDS; (ii) CiVDS-mediated EPSCs are independent of extracellular and intracellular Ca2+ ; (iii) CiVDS is faster than CDS in vesicle recycling with much less short-term depression; (iv) the fusion machinery of CiVDS includes Cav2.2 (voltage sensor) and SNARE (fusion pore). Together, an essential component of activity-induced EPSCs is mediated by CiVDS in a central synapse.


Assuntos
Gânglios Espinais , Células do Corno Posterior , Animais , Células do Corno Posterior/fisiologia , Transmissão Sináptica/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses , Mamíferos
9.
Sci Rep ; 12(1): 14196, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987765

RESUMO

Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 µm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3-13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.


Assuntos
Sinapses , Transmissão Sináptica , Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Junção Neuromuscular , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
10.
Nat Commun ; 13(1): 4826, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974109

RESUMO

The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.


Assuntos
Córtex Entorrinal , Potenciais Pós-Sinápticos Excitadores , Hipocampo , Neurônios , Memória Espacial , Animais , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Mamíferos , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia , Memória Espacial/fisiologia
11.
EMBO Rep ; 23(10): e54543, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35993189

RESUMO

Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.


Assuntos
Fator 2 de Elongação de Peptídeos/metabolismo , Córtex Pré-Frontal , Transmissão Sináptica , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Fatores de Alongamento de Peptídeos/metabolismo , Córtex Pré-Frontal/fisiologia , Comportamento Social , Transmissão Sináptica/fisiologia
12.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012124

RESUMO

NX210c is a disease-modifying dodecapeptide derived from the subcommissural organ-spondin that is under preclinical and clinical development for the treatment of neurological disorders. Here, using whole-cell patch-clamp recordings, we demonstrate that NX210c increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and GluN2A-containing N-methyl-D-aspartate receptor (GluN2A-NMDAR)-mediated excitatory postsynaptic currents in the brain. Accordingly, using extracellular field excitatory postsynaptic potential recordings, an enhancement of synaptic transmission was shown in the presence of NX210c in two different neuronal circuits. Furthermore, the modulation of synaptic transmission and GluN2A-NMDAR-driven signaling by NX210c restored memory in mice chronically treated with the NMDAR antagonist phencyclidine. Overall, by promoting glutamatergic receptor-related neurotransmission and signaling, NX210c represents an innovative therapeutic opportunity for patients suffering from CNS disorders, injuries, and states with crippling synaptic dysfunctions.


Assuntos
Receptores de AMPA , Transmissão Sináptica , Animais , Sistema Nervoso Central/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Peptídeos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
13.
Neuroscience ; 498: 125-143, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792195

RESUMO

In presymptomatic amyotrophic lateral sclerosis (ALS), spinal motoneurons (MNs) have reduced firing patterns and synaptic excitation levels. Preliminary data indicated that in the SOD1 G93A mouse model of ALS, monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in spinal MN by Ia proprioceptive afferent stimulation could be facilitated by trans-spinal direct current stimulation (tsDCS). However, which element of the Ia afferent-MN circuit is affected by tsDCS, and whether tsDCS-induced EPSP facilitation is a general phenomenon or specific to the superoxide dismutase type-1 (SOD1) Glycine to Alanine substitution at position 93 (G93A) mutation, remain to be determined. In this study, we have applied 15-minute tsDCS to the lumbar segments of presymptomatic SOD1 and wildtype (WT) mice and explored its impact on MN passive membrane properties, EPSP amplitude, and Ia afferent activity. While anodal tsDCS induced short-lasting EPSP facilitation in both SOD1 and WT mice, Ia afferent activity and passive membrane properties were altered only in SOD1 mice. Interestingly, EPSP amplitudes of SOD1 mice remained facilitated for at least 1 h after current application, but no long-lasting effect was observed in WT mice. Moreover, anodal tsDCS failed to induce any long-lasting changes in MN passive membrane properties in both SOD1 and WT mice. Conversely, cathodal tsDCS decreased Ia afferent induced EPSP amplitudes only during current application in SOD1 MNs, and no significant effects on Ia afferents excitability were observed. Our findings indicate the high susceptibility of SOD1 MNs to tsDCS and highlight the potential of this neuromodulation technique for the treatment of ALS.


Assuntos
Terapia por Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Alanina , Esclerose Amiotrófica Lateral , Animais , Terapia por Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicina , Camundongos , Neurônios Motores/fisiologia , Medula Espinal , Superóxido Dismutase , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
14.
Brain Res Bull ; 188: 1-10, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850188

RESUMO

The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.


Assuntos
Neuralgia , Nervos Espinhais , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Tálamo
15.
Neurobiol Dis ; 171: 105807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35777536

RESUMO

Hyperthyroidism has been identified as a risk factor for cognitive disorders. The hippocampus is a key brain region associated with cognitive function, among which excitatory synapse transmission plays an important role in the process of learning and memory. However, the mechanism by which hyperthyroidism leads to cognitive dysfunction through a synaptic mechanism remains unknown. We investigated the synaptic mechanisms in the effects of hyperthyroidism in an animal model that involved repeated injection of triiodothyronine (T3). These mice displayed impaired learning and memory in the Novel object recognition test, Y-maze test, and Morris Water Maze test, as well as elevated anxiety in the elevated plus maze. Mature dendritic spines in the hippocampal CA1 region of hyperthyroid mice were significantly decreased, accompanied by decreased level of AMPA- and NMDA-type glutamate receptors in the hippocampus. In primary cultured hippocampal neurons, levels of AMPA- and NMDA-type glutamate receptors also decreased and whole-cell patch-clamp recording revealed that excitatory synaptic function was obviously attenuated after T3 treatment. Notably, pharmacological activation of AMPAR or NMDAR by intraperitoneal injection of CX546, an AMPAR agonist, or NMDA, an NMDAR agonist can restore excitatory synaptic function and corrected impaired learning and memory deficit in hyperthyroid mice. Together, our findings uncovered a previously unrecognized AMPAR and NMDAR-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and learning and memory disorders in hyperthyroidism.


Assuntos
Hipertireoidismo , Receptores de N-Metil-D-Aspartato , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/farmacologia , Hipocampo , Hipertireoidismo/complicações , Potenciação de Longa Duração/fisiologia , Camundongos , N-Metilaspartato/farmacologia , Receptores de Glutamato , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
16.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35701166

RESUMO

The dendrites of cortical pyramidal neurons receive synaptic inputs from different pathways that are organized according to their laminar target. This architectural scheme provides cortical neurons with a spatial mechanism to separate information, which may support neural flexibility required during learning. Here, we investigated layer-specific plasticity of sensory encoding following learning by recording from two different dendritic compartments, tuft and basal dendrites, of layer 2/3 (L2/3) pyramidal neurons in the auditory cortex of mice. Following auditory fear conditioning, auditory-evoked Ca2+ responses were enhanced in tuft, but not basal, dendrites leading to increased somatic action potential output. This is in direct contrast to the long held (and debated) hypothesis that, despite extensive dendritic arbors, neurons function as a simple one-compartment model. Two computational models of varying complexity based on the experimental data illustrated that this learning-related increase of auditory responses in tuft dendrites can account for the changes in somatic output. Taken together, we illustrate that neurons do not function as a single compartment, and dendritic compartmentalization of learning-related plasticity may act to increase the computational power of pyramidal neurons.


Assuntos
Dendritos , Células Piramidais , Potenciais de Ação/fisiologia , Animais , Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios , Células Piramidais/fisiologia
17.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628556

RESUMO

Unrelated genetic mutations can lead to convergent manifestations of neurological disorders with similar behavioral phenotypes. Experimental data frequently show a lack of dramatic changes in neuroanatomy, indicating that the key cause of symptoms might arise from impairment in the communication between neurons. A transient imbalance between excitatory (glutamatergic) and inhibitory (GABAergic) synaptic transmission (the E/I balance) during early development is generally considered to underlie the development of several neurological disorders in adults. However, the E/I ratio is a multidimensional variable. Synaptic contacts are highly dynamic and the actual strength of synaptic projections is determined from the balance between synaptogenesis and synaptic elimination. During development, relatively slow postsynaptic receptors are replaced by fast ones that allow for fast stimulus-locked excitation/inhibition. Using the binomial model of synaptic transmission allows for the reassessing of experimental data from different mouse models, showing that a transient E/I shift is frequently counterbalanced by additional pre- and/or postsynaptic changes. Such changes-for instance, the slowing down of postsynaptic currents by means of immature postsynaptic receptors-stabilize the average synaptic strength, but impair the timing of information flow. Compensatory processes and/or astrocytic signaling may represent possible targets for medical treatments of different disorders directed to rescue the proper information processing.


Assuntos
Neurônios , Transmissão Sináptica , Animais , Astrócitos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Neurônios/fisiologia , Transdução de Sinais , Transmissão Sináptica/fisiologia
18.
Curr Protoc ; 2(4): e409, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435326

RESUMO

Synaptic modulation and plasticity are key mechanisms underlying pain transmission in the spinal cord and supra-spinal centers. The study and understanding of these phenomena are fundamental to investigating both acute nociception and maladaptive changes occurring in chronic pain. This article describes experimental protocols and analytical methods utilized in electrophysiological studies to investigate synaptic modulation and plasticity at the first station of somatosensory processing, the spinal cord dorsal horn. Protocols useful for characterizing the nature of synaptic inputs, the site of modulation (pre- versus postsynaptic), and the presence of short-term synaptic plasticity are presented. These methods can be employed to study the physiology of acute nociception, the pathological mechanisms of persistent inflammatory and neuropathic pain, and the pharmacology of receptors and channels involved in pain transmission. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Spinal cord dissection and acute slice preparation Basic Protocol 2: Stimulation of the dorsal root and extracellular recording (compound action potentials and field potentials) Basic Protocol 3: Patch-clamp recording from dorsal horn neurons: action potential firing patterns and evoked synaptic inputs Basic Protocol 4: Analysis of parameters responsible for changes in synaptic efficacy Basic Protocol 5: Recording and analysis of currents mediated by astrocytic glutamate.


Assuntos
Neuralgia , Roedores , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal , Transmissão Sináptica/fisiologia
19.
Pain ; 163(10): 2014-2020, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297816

RESUMO

ABSTRACT: Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.


Assuntos
Substância Cinzenta , Nociceptividade , Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios , Neurônios Aferentes/fisiologia , Nociceptividade/fisiologia , Medula Espinal/fisiologia
20.
J Cereb Blood Flow Metab ; 42(9): 1650-1665, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35240875

RESUMO

Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca2+ spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy.


Assuntos
Giro Denteado , Epilepsia , Neurônios , Receptores Acoplados a Proteínas G , Animais , Encéfalo , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Ácido Láctico , Camundongos , Neurônios/fisiologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...